Respuesta :

Given:

The measure of arc AB is (4y + 6)°

The measure of arc BC is (20y - 11)°

The measure of arc AC is (7y - 7)°

We need to determine the measure of arc ABC.

Value of y:

The value of y is given by

[tex]m \widehat{AB}+m \widehat{BC}+ m \widehat{AC}=360[/tex]

Substituting the values, we get;

[tex]4y+6+20y-11+7y-7=360[/tex]

Adding the like terms, we have;

[tex]31y-12=360[/tex]

Adding both sides of the equation by 12, we have;

[tex]31y=372[/tex]

   [tex]y=12[/tex]

Thus, the value of y is 12.

Measure of arc ABC:

The measure of arc ABC can be determined by adding the measure of arc AB and arc BC.

Thus, we have;

[tex]m \widehat{ABC}=m \widehat{AB}+ m \widehat{BC}[/tex]

[tex]m \widehat{AB}+m \widehat {BC}=4y+6+20y-11[/tex]

                      [tex]=24y-5[/tex]

Substituting y = 12, we get;

[tex]m \widehat{AB}+m \widehat {BC}=24(12)-5[/tex]

                      [tex]=288-5[/tex]

[tex]m \widehat{AB}+m \widehat {BC}=283^{\circ}[/tex]

Thus, the measure of arc ABC is 283°

ACCESS MORE