An electromagnetic wave strikes a 1.12-cm2 section of wall perpendicularly. the rms value of the wave's magnetic field is determined to be 5.50 Ã 10-4 t. how long does it take for the wave to deliver 2780 j of energy to the wall?

Respuesta :

Answer:

0.34 s

Explanation:

We are given that

Area,A=[tex]1.12 cm^2=1.12\times 10^{-4} m^2[/tex]

[tex] 1cm^2=10^{-4} m^2[/tex]

Magnetic field,B=[tex]5.5\times 10^{-4} T[/tex]

Energy,E=2780 J

Intensity of electromagnetic wave which strikes the wall ,[tex]I=\frac{B^2}{\mu_0}c[/tex]

Where [tex]\mu_0=4\pi\times 10^{-7}[/tex]

[tex]c=3\times 10^8 m/s[/tex]

[tex]I=\frac{(5.5\times 10^{-4})^2}{4\pi\times 10^{-7}}\times 3\times 10^8[/tex]

[tex]I=7.22\times 10^7W/m^2[/tex]

Average  power emitted by electromagnetic wave,[tex]P_{avg}=IA=7.22\times 10^7\times 1.12\times 10^{-4}=8086.4 W[/tex]

Time,t=[tex]\frac{E}{P_{avg}}[/tex]

[tex]t=\frac{2780}{8086.4}=0.34 s[/tex]