A 200.0 mL solution of 0.40 M ammonium chloride was titrated with 0.80 M sodium hydroxide. What was the pH of the solution after 50.0 mL of the NaOH solution were added? The Kb of ammonia is 1.76×10^-5.

Respuesta :

Answer:

9.25

Explanation:

Let first find the moles of [tex]NH_4Cl[/tex] and [tex]NaOH[/tex]

number of moles of [tex]NH_4Cl[/tex] = 0.40  mol/L × 200 ×  10⁻³L

= 0.08 mole

number of moles of [tex]NaOH[/tex] = 0.80  mol/L × 50 ×  10⁻³L

= 0.04 mole

The equation for the reaction is expressed as:

[tex]NH^+_{4(aq)} \ + OH^-_{(aq)} ------> NH_{3(g)} \ + H_2O_{(l)}[/tex]

The ICE Table is shown below as follows:

                            [tex]NH^+_{4(aq)} \ + OH^-_{(aq)} ------> NH_{3(g)} \ + H_2O_{(l)}[/tex]

Initial (M)              0.08            0.04                            0

Change (M)         - 0.04          -0.04                          + 0.04

Equilibrium (M)      0.04             0                                0.04

[tex]K_a*K_b = 10^{-14} \ at \ 25^0C[/tex]

[tex]K_a = \frac{10^{-14}}{K_b}[/tex]

[tex]K_a = \frac{10^{-14}}{1.76*10^{-5}}[/tex]

[tex]K_a= 5.68*10^{10}[/tex]

[tex]pK_a = - log \ (K_a)[/tex]

[tex]pK_a = - log \ (5.68*10^{-10})[/tex]

[tex]pK_a = 9.25[/tex]

[tex]pH = pKa + \ log (\frac{HB}{HA} )[/tex]   for buffer solutions

[tex]pH = pKa + \ log (\frac{moles \ of \ base }{ moles\ of \ acid} )[/tex] since they are in the same solution

[tex]pH = 9.25 + \ log (\frac{0.04 }{ 0.04} )[/tex]

[tex]pH = 9.25[/tex]

RELAXING NOICE
Relax