Answer:
9.25
Explanation:
Let first find the moles of [tex]NH_4Cl[/tex] and [tex]NaOH[/tex]
number of moles of [tex]NH_4Cl[/tex] = 0.40 mol/L × 200 × 10⁻³L
= 0.08 mole
number of moles of [tex]NaOH[/tex] = 0.80 mol/L × 50 × 10⁻³L
= 0.04 mole
The equation for the reaction is expressed as:
[tex]NH^+_{4(aq)} \ + OH^-_{(aq)} ------> NH_{3(g)} \ + H_2O_{(l)}[/tex]
The ICE Table is shown below as follows:
[tex]NH^+_{4(aq)} \ + OH^-_{(aq)} ------> NH_{3(g)} \ + H_2O_{(l)}[/tex]
Initial (M) 0.08 0.04 0
Change (M) - 0.04 -0.04 + 0.04
Equilibrium (M) 0.04 0 0.04
[tex]K_a*K_b = 10^{-14} \ at \ 25^0C[/tex]
[tex]K_a = \frac{10^{-14}}{K_b}[/tex]
[tex]K_a = \frac{10^{-14}}{1.76*10^{-5}}[/tex]
[tex]K_a= 5.68*10^{10}[/tex]
[tex]pK_a = - log \ (K_a)[/tex]
[tex]pK_a = - log \ (5.68*10^{-10})[/tex]
[tex]pK_a = 9.25[/tex]
[tex]pH = pKa + \ log (\frac{HB}{HA} )[/tex] for buffer solutions
[tex]pH = pKa + \ log (\frac{moles \ of \ base }{ moles\ of \ acid} )[/tex] since they are in the same solution
[tex]pH = 9.25 + \ log (\frac{0.04 }{ 0.04} )[/tex]
[tex]pH = 9.25[/tex]