Respuesta :
Answer:
a) [tex]v_{b} = \sqrt{\frac{R}{m}( n_{b} - mg)}[/tex]
b) [tex]v_{t} = \sqrt{\frac{R}{m}( n_{b} - mg) - 4gR}[/tex]
c) [tex]N_{t} = = n_{b} - 6mg[/tex]
Explanation:
NOTE: No values are provided in this exercise, any values of the given parameters can be substituted into the answers provided
Let the mass of the block = m
Radius = R
Normal force acting on the block, N = [tex]n_{b}[/tex]
a) Calculate the velocity of the block at the bottom of its path, [tex]v_{b}[/tex]
According to Newton's second law of motion,
[tex]\sum F = ma\\\sum F = N - mg[/tex]
N - mg = ma
Since the block clides in a vertical circle, the acceleration, a, is a centripetal acceleration
[tex]a = \frac{v_{b} ^{2} }{R}[/tex]
[tex]n_{b} - mg = \frac{mv_{b} ^{2} }{R}[/tex]
[tex]\frac{R}{m}( n_{b} - mg) = v_{b} ^{2} \\ v_{b} = \sqrt{\frac{R}{m}( n_{b} - mg)}[/tex]
b) Use conservation of energy to find the velocity of the block at the top of its path.
According to the law of conservation of energy
[tex]K_{b} = K_{t} + PE_{t}[/tex].................(1)
[tex]PE_{t} = mgh[/tex]
The height of the block's path at the top, h = twice the radius
h = 2R
[tex]PE_{t} = mg(2R)\\PE_{t} = 2mgR[/tex]
From equation (1)
[tex]\frac{1}{2} mv_{b} ^{2} = \frac{1}{2} mv_{t} ^{2} + 2mgR\\\frac{1}{2} v_{b} ^{2} = \frac{1}{2} v_{t} ^{2} + 2gR\\\frac{1}{2} v_{b} ^{2} - 2gR= \frac{1}{2} v_{t} ^{2}[/tex]
Substituting [tex]v_{b}[/tex] into the equation above
[tex]\frac{1}{2} (\sqrt{\frac{R}{m}( n_{b} - mg)})^{2} - 2gR = \frac{1}{2} v_{t} ^{2} \\\frac{R}{m}( n_{b} - mg) - 4gR = v_{t} ^{2}\\v_{t} = \sqrt{\frac{R}{m}( n_{b} - mg) - 4gR}[/tex]
c) Find the normal force that the track exerts on the block at the top of its path.
From the Newton's law of motion applied in part a
[tex]N_{t}[/tex] + mg = ma
[tex]a = \frac{v_{t} ^{2} }{R}[/tex]
[tex]N_{t} = \frac{mv_{t}^{2}} {R} - mg[/tex]
[tex]N_{t} = \frac{m(\frac{R}{m}( n_{b} - mg) - 4gR) }{R} - mg\\N_{t} = (n_{b} - mg) - 4mg - mg\\N_{t} = = n_{b} - 6mg[/tex]
