Respuesta :

Answer:

The solution is [tex]x =0.[/tex]

Step-by-step explanation:

The equation

[tex]\bold{(1).}\: sin(\dfrac{3\pi }{2} +x)+sin(\dfrac{3\pi }{2} +x) =-2[/tex]

can be rewritten as

[tex]2* sin(\dfrac{3\pi }{2} +2) =-2[/tex]

and can be further simplified to

[tex]sin(\dfrac{3\pi }{2}+x ) =-1[/tex].

Now, taking the inverse sine of both sides we get:

[tex]sin^{-1}(sin(\dfrac{3\pi }{2} +x) =sin^{-1}(-1)[/tex]

[tex]\bold{(2).}\: \dfrac{3\pi }{2} +2 =sin^{-1}(-1)[/tex]

The value of the right side on the interval [tex][0,2\pi)[/tex] is

[tex]sin^{-1}(-1) = \dfrac{3\pi}{2} \: \:( \text{or }270^o)[/tex] ,

which makes the equation (2)

[tex]\dfrac{3\pi }{2}+x =\dfrac{3\pi}{2}[/tex]

solving for [tex]x[/tex] gives

[tex]\boxed{x = 0}[/tex]

which is our solution.

ACCESS MORE