Respuesta :
Answer:
Volume of the right pyramid = 288 m²
Step-by-step explanation:
Volume of the pyramid = [tex]\frac{1}{3}\times {\text{Area of the rectangular base}\times height(h)[/tex]
From the ΔAOB,
By Pythagoras theorem,
AB² = AO² + OB²
(6√2)² = AO² + (6)²
72 = AO² + 36
AO = √(36) = 6 m
Since base of the pyramid is a square so area of the base = (Length × Width) = (side)²
Now volume of the pyramid = [tex]\frac{1}{3}[(Length)(width)]\times height[/tex]
= [tex]\frac{1}{3}(12\times 12)\times 6[/tex]
= 288 m²
Therefore, volume of the right pyramid is 288 m².
![Ver imagen eudora](https://us-static.z-dn.net/files/d40/0dd4c354117630a6e1349f62b49d323c.png)
Answer:
the apothem is 6
the hypotenuse of ABC is the slant height
the height is 6 meters
the volume of the pyramid is 288 cubic meters
Step-by-step explanation: