A right pyramid with a square base has a base edge length of 12 meters and slant height of 6StartRoot 2 EndRoot meters. The apothem is meters. The hypotenuse of ΔABC is the . The height is meters. The volume of the pyramid is cubic meters.

Respuesta :

Answer:

Volume of the right pyramid = 288 m²

Step-by-step explanation:

Volume of the pyramid = [tex]\frac{1}{3}\times {\text{Area of the rectangular base}\times height(h)[/tex]

From the ΔAOB,

By Pythagoras theorem,

AB² = AO² + OB²

(6√2)² = AO² + (6)²

72 = AO² + 36

AO = √(36) = 6 m

Since base of the pyramid is a square so area of the base = (Length × Width) = (side)²

Now volume of the pyramid = [tex]\frac{1}{3}[(Length)(width)]\times height[/tex]

                                               = [tex]\frac{1}{3}(12\times 12)\times 6[/tex]

                                               = 288 m²

Therefore, volume of the right pyramid is 288 m².

Ver imagen eudora

Answer:

the apothem is 6

the hypotenuse of ABC is the slant height

the height is 6 meters

the volume of the pyramid is 288 cubic meters

Step-by-step explanation: