Answer:
[tex]x^2+\frac{1}{x^2}=5[/tex]
Step-by-step explanation:
[tex]x^4+\frac{1}{x^4}=23[/tex] is given.
We want to find [tex]x^2+\frac{1}{x^2}[/tex].
If we square the value we want to find, we should wind up with some terms of the left hand side of the given.
[tex](x^2+\frac{1}{x^2})^2[/tex]
Expand:
[tex]x^4+2x^2\frac{1}{x^2}+\frac{1}{x^4}[/tex] (We used the identity: [tex](x+a)^2=x^2+2xa+a^2)[/tex] for expansion).
Simplify this value:
[tex]x^4+2+\frac{1}{x^4}[/tex]
[tex]x^4+\frac{1}{x^4}+2[/tex]
We are given that the sum of the first two terms is 23.
This means [tex](x^2+\frac{1}{x^2})^2=23+2[/tex].
Let's simplify the right hand side.
[tex](x^2+\frac{1}{x^2})^2=25[/tex]
Now to find the value we want we must simply take the square root of both sides.
[tex]x^2+\frac{1}{x^2}=\pm \sqrt{25}[/tex]
Simplify the right hand side:
[tex]x^2+\frac{1}{x^2}=\pm 5[/tex]
Since [tex]x^2+\frac{1}{x^2}[/tex] is positive for any real value [tex]x[/tex] (that is not zero), then we can conclude [tex]x^2+\frac{1}{x^2}=5[/tex].