Respuesta :

Answer:

[tex]x^2+\frac{1}{x^2}=5[/tex]

Step-by-step explanation:

[tex]x^4+\frac{1}{x^4}=23[/tex] is given.

We want to find [tex]x^2+\frac{1}{x^2}[/tex].

If we square the value we want to find, we should wind up with some terms of the left hand side of the given.

[tex](x^2+\frac{1}{x^2})^2[/tex]

Expand:

[tex]x^4+2x^2\frac{1}{x^2}+\frac{1}{x^4}[/tex] (We used the identity: [tex](x+a)^2=x^2+2xa+a^2)[/tex] for expansion).

Simplify this value:

[tex]x^4+2+\frac{1}{x^4}[/tex]

[tex]x^4+\frac{1}{x^4}+2[/tex]

We are given that the sum of the first two terms is 23.

This means [tex](x^2+\frac{1}{x^2})^2=23+2[/tex].

Let's simplify the right hand side.

[tex](x^2+\frac{1}{x^2})^2=25[/tex]

Now to find the value we want we must simply take the square root of both sides.

[tex]x^2+\frac{1}{x^2}=\pm \sqrt{25}[/tex]

Simplify the right hand side:

[tex]x^2+\frac{1}{x^2}=\pm 5[/tex]

Since [tex]x^2+\frac{1}{x^2}[/tex] is positive for any real value [tex]x[/tex] (that is not zero), then we can conclude [tex]x^2+\frac{1}{x^2}=5[/tex].