Respuesta :

The first five terms of the sequence are -10, -33, -125, -493, -1965

Explanation:

The given expression is [tex]a_n=4a_{n-1}+7[/tex]

And [tex]a_1=-10[/tex] is the first term of the sequence.

We need to determine the first five terms of the sequence.

Second term:

Substituting n = 2 in the expression [tex]a_n=4a_{n-1}+7[/tex], we have,

[tex]a_2=4a_{2-1}+7[/tex]

[tex]a_2=4a_1+7[/tex]

[tex]a_2=4(-10)+7[/tex]

[tex]a_2=-40+7=-33[/tex]

Thus, the second term is -33

Third term:

Substituting n = 3 in the expression [tex]a_n=4a_{n-1}+7[/tex], we have,

[tex]a_3=4a_2+7[/tex]

[tex]a_3=4(-33)+7[/tex]

[tex]a_3=132+7=-125[/tex]

Thus, the third term is -125

Fourth term:

Substituting n = 4 in the expression [tex]a_n=4a_{n-1}+7[/tex], we have,

[tex]a_4=4a_3+7[/tex]

[tex]a_4=4(-125)+7[/tex]

[tex]a_4=-500+7=-493[/tex]

Thus, the fourth term is -493

Fifth term:

Substituting n = 5 in the expression [tex]a_n=4a_{n-1}+7[/tex], we have,

[tex]a_5=4a_4+7[/tex]

[tex]a_5=4(-493)+7[/tex]

[tex]a_5=-1972+7=-1965[/tex]

Thus, the fifth term is -1965

Hence, the first five terms of the sequence are -10, -33, -125, -493, -1965

ACCESS MORE