Respuesta :
Answer:
p represent the population parameter , true proportion of people who play chess in the UK
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
[tex]z=\frac{0.1675 -0.12}{\sqrt{\frac{0.12(1-0.12)}{400}}}=2.923[/tex]
Step-by-step explanation:
Data given and notation
n=400 represent the random sample taken
X=67 represent the people who play chess
[tex]\hat p=\frac{67}{400}=0.1675[/tex] estimated proportion of people who play chess
[tex]p_o=0.12[/tex] is the value that we want to test
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value (variable of interest)
p represent the population parameter , true proportion of people who play chess in the UK
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the true proportion i higher than 0.13.:
Null hypothesis:[tex]p \leq 0.12[/tex]
Alternative hypothesis:[tex]p > 0.12[/tex]
When we conduct a proportion test we need to use the z statisitc, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Calculate the statistic
Since we have all the info required we can replace in formula (1) like this:
[tex]z=\frac{0.1675 -0.12}{\sqrt{\frac{0.12(1-0.12)}{400}}}=2.923[/tex]