Answer:
303
Explanation:
We are given that
Emf in coil 1,[tex]E_1=3.13 V[/tex]
Emf induced in coil 2,[tex]E_2=4.16 V[/tex]
Number of loops in coil 1,[tex]N_1=228[/tex]
We have to find the number of loops in coil 2.
Rat of change of magnetic flux in a single loop is same.
Let [tex]\phi_1[/tex] and [tex]\phi_2[/tex] be the magnetic flux in coil 1 and coil 2.
[tex]\frac{d\phi_1}{dt}=\frac{d\phi_2}{dt}[/tex]
[tex]\frac{V_2}{V_1}=\frac{N_2}{N_1}[/tex]
Using the formula
[tex]\frac{E_2}{E_1}=\frac{N_2}{N_1}[/tex]
[tex]\frac{4.16}{3.13}=\frac{N_2}{228}[/tex]
[tex]N_2=\frac{4.16}{3.13}\times 228[/tex]
[tex]N_2=303[/tex]
Hence, the number of loops in coil 2=303