Answer:
a) [tex]\omega \approx 219.911\,\frac{rad}{s}[/tex], b) [tex]\alpha = 16.916\,\frac{rad}{s^{2}}[/tex], c) [tex]a_{t} = 1.776\,\frac{m}{s^{2}}[/tex], d) [tex]a_{n} = 5077.889\,\frac{m}{s^{2}}[/tex], e) The direction of the centripetal acceleration experimented by the gum goes to the center of rotation, f) Zero, g) [tex]v = 23.091\,\frac{m}{s}[/tex].
Explanation:
a) The maximum angular velocity of the fan is:
[tex]\omega = (35\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )[/tex]
[tex]\omega \approx 219.911\,\frac{rad}{s}[/tex]
b) The angular acceleration of the fan is:
[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex]
[tex]\alpha = \frac{219.911\,\frac{rad}{s}-0\,\frac{rad}{s}}{13\,s}[/tex]
[tex]\alpha = 16.916\,\frac{rad}{s^{2}}[/tex]
c) The magnitude of the tangential aceleration is:
[tex]a_{t} = (16.916\,\frac{rad}{s^{2}} )\cdot (0.105\,m)[/tex]
[tex]a_{t} = 1.776\,\frac{m}{s^{2}}[/tex]
d) The magnitude of the centripetal acceleration is:
[tex]a_{n} = (219.911\,\frac{rad}{s} )^{2}\cdot (0.105\,m)[/tex]
[tex]a_{n} = 5077.889\,\frac{m}{s^{2}}[/tex]
e) The direction of the centripetal acceleration experimented by the gum goes to the center of rotation.
f) When fan is at full speed, it rotates at constant rate and, hence, there is no angular acceleration. Besides, the tangential acceleration experimented by the gum is zero.
g) The linear speed of the gum is:
[tex]v = (219.911\,\frac{rad}{s} )\cdot (0.105\,m)[/tex]
[tex]v = 23.091\,\frac{m}{s}[/tex]