The volume of [tex]E[/tex] is
[tex]\displaystyle V(E)=\iiint_E\mathrm dV[/tex]
To compute the integral, convert to cylindrical coordinates:
[tex]x=r\cos\theta[/tex]
[tex]y=r\sin\theta[/tex]
[tex]z=z[/tex]
[tex]\implies\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm dz[/tex]
[tex]\displaystyle V(E)=\int_0^{2\pi}\int_0^3\int_0^{9-r^2}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=\frac{81\pi}2[/tex]
Now integrate [tex]f[/tex] over [tex]E[/tex]. In cylindrical coordinates, we get
[tex]\displaystyle\iiint_E3x^2z+3y^2z\,\mathrm dV=3\int_0^{2\pi}\int_0^3\int_0^{9-r^2}r^3z\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=\frac{6561\pi}8[/tex]
Then the average value of [tex]f[/tex] over [tex]E[/tex] is [tex]\dfrac{\frac{6561\pi}8}{\frac{81\pi}2}=\dfrac{81}4[/tex].