Respuesta :
Answer:
[tex]\displaystyle \iiint_E \, dV = 20 \pi[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Multivariable Calculus
Cylindrical Coordinate Conversions:
- [tex]\displaystyle x = r \cos \theta[/tex]
- [tex]\displaystyle y = r \sin \theta[/tex]
- [tex]\displaystyle z = z[/tex]
- [tex]\displaystyle r^2 = x^2 + y^2[/tex]
- [tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]
Volume Formula [Cylindrical Coordinates]:
[tex]\displaystyle V = \iiint_T \, dV \rightarrow V = \iiint_T {r} \, dz \, dr \, d\theta[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \text{Region} \ E \left\{ \begin{array}{ccc} \text{Cylinder} \ x^2 + y^2 = 4 \\ \text{Plane} \ z = 2 \\ \text{Plane} \ z = 7 \end{array}[/tex]
Step 2: Integrate Pt. 1
Find z bounds.
- [Given] Define:
[tex]\displaystyle 2 \leq z \leq 7[/tex]
Find r bounds.
- [Cylinder] Substitute in cylindrical conversions:
[tex]\displaystyle x^2 + y^2 = 4 \rightarrow r^2 = 4[/tex] - Simplify:
[tex]\displaystyle r = \pm 2[/tex] - [r] Identify:
[tex]\displaystyle r = 2[/tex] - Define limits:
[tex]\displaystyle 0 \leq r \leq 2[/tex]
Find θ bounds.
- [Cylinder] Graph [See 2nd Attachment]
- Identify limits:
[tex]\displaystyle 0 \leq \theta \leq 2 \pi[/tex]
Step 3: Integrate Pt. 2
- [Integrals] Convert [Volume Formula - Cylindrical Coordinates]:
[tex]\displaystyle \iiint_T \, dV = \iiint_T {r} \, dz \, dr \, d\theta[/tex] - [Integrals] Substitute in region T:
[tex]\displaystyle \iiint_T \, dV = \int\limits^{2 \pi}_0 \int\limits^{2}_0 \int\limits^7_2 {r} \, dz \, dr \, d\theta[/tex] - [dz Integral] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \iiint_T \, dV = \int\limits^{2 \pi}_0 \int\limits^{2}_0 {rz \bigg| \limits^{z = 7}_{z = 2}} \, dr \, d\theta[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus]:
[tex]\displaystyle \iiint_T \, dV = \int\limits^{2 \pi}_0 \int\limits^{2}_0 {5r} \, dr \, d\theta[/tex] - [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \iiint_T \, dV = 5 \int\limits^{2 \pi}_0 \int\limits^{2}_0 {r} \, dr \, d\theta[/tex]
- [dr Integral] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \iiint_T \, dV = 5 \int\limits^{2 \pi}_0 {\frac{r^2}{2} \bigg| \limits^{r = 2}_{r = 0}} \, d\theta[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus]:
[tex]\displaystyle \iiint_T \, dV = 5 \int\limits^{2 \pi}_0 {2} \, d\theta[/tex] - [Integral] Rewrite [Integration Property - Multiplied Constant]:
[tex]\displaystyle \iiint_T \, dV = 10 \int\limits^{2 \pi}_0 {} \, d\theta[/tex] - [Integral] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \iiint_T \, dV = 10 \theta \bigg| \limits^{\theta = 2 \pi}_{\theta = 0}[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus]:
[tex]\displaystyle \iiint_T \, dV = 10(2 \pi)[/tex] - Simplify:
[tex]\displaystyle \iiint_E \, dV = 20 \pi[/tex]
∴ the integral bound by region D is equal to 20π.
---
Learn more about cylindrical coordinates: https://brainly.com/question/6177409
Learn more about multivariable calculus: https://brainly.com/question/17203772
---
Topic: Multivariable Calculus
Unit: Triple Integrals Applications

