Answer:
Step-by-step explanation:
Amount of brine = 100 gal
amount of salt = 80 lb
rate of water running = 4 gal / min
Let A be the amount of salt in lb in the tank at any time t.
(a) dA/dt = rate of salt in - rate of salt out
Rate of salt in = 0
rate of salt out = A x 4 / 100 = A / 25 lb/min
So, dA/dt = 0 - A/25 = - A/25 lb/min
[tex]\frac{dA}{A}=-\frac{1}{25}dt[/tex]
[tex]\int \frac{dA}{A}=-\frac{1}{25}\int dt[/tex]
[tex]A(t) = C e^{-0.04t}[/tex]
When t = 0, A = 80 lb
So,
[tex]A(t) = 80 e^{-0.04t}[/tex]
(b) Now, A = 40 lb
So,
[tex]40 = 80 e^{-0.04t}[/tex]
[tex]0.5 = e^{-0.04t}[/tex]
take log on both the sides
[tex]ln 0.5 = - 0.04 t[/tex]
t = 17.3 minutes