What is the solution to the inequality
![What is the solution to the inequality class=](https://us-static.z-dn.net/files/da6/e80aaa65cf6f862fb7327bb289eb2c03.jpg)
Answer:
p > 5 and p <-8
Step-by-step explanation:
To solve this, you first need to isolate p.
First add 6 on both sides of the equation:
[tex]-6 + |2p+3| >7\\\\(+6) -6 + |2p+3| >7 +6\\\\2p + 3 > 13[/tex]
Then subtract 3 from both sides of the equation.
[tex]2p+3-3>13-3\\\\2p > 10\\[/tex]
The divide both sides by 2.
[tex]\dfrac{2p}{2}>\dfrac{10}{2}\\\\p>5[/tex]
Another solution is possible because of the absolute value.
If [tex]|2p+3|>13[/tex]
Then [tex]|2p+3|<-13[/tex]
Thus we can solve the second solution:
[tex]|2p+3|<-13[/tex]
[tex]2p+3<-13[/tex]
Isolate P again by subtracting both sides by 3
[tex]2p+3-3<-13-3[/tex]
[tex]2p<-16[/tex]
Then divide both sides by 2:
[tex]\dfrac{2p}{2}<-\dfrac{16}{2}[/tex]
[tex]p<-8[/tex]
Answer:
p > 5, p < -8
Step-by-step explanation:
We are given the following inequality and we are to find its solution:
[tex]-6+|2p+3|>7[/tex]
Adding 6 to both sides to get:
[tex]-6+6+|2p+3|>7+6[/tex]
[tex]|2p+3|>13[/tex]
We know the absolute rule that [tex]\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad \mathrm{or}\quad \:u\:>\:a[/tex].
So [tex]2p+3>13[/tex] or [tex]2p+3<-13[/tex]
[tex] 2 p > 1 3 - 3 [/tex], [tex] 2 p < - 1 3 - 3 [/tex]
[tex] 2 p > 1 0 [/tex], [tex] 2 p < - 1 6 [/tex]
[tex]p>\frac{10}{2}[/tex], [tex]p<\frac{-16}{2}[/tex]
p > 5, p < -8