Respuesta :

Answer:

Slope=1/2

Step-by-step explanation:

Slope=(y2-y1) /(x2-x1)

(-5,2)............x1=-5, y1=2

(1,5)..............x2=1, y2=5

Slope=(5-2)/(1-(-5))

Slope=3/(1+5)

Slope=3/6

Slope=1/2

Answer:

[tex]\boxed{\boxed{ \sf Slope/m = \tt \cfrac{1}{2}}} [/tex]

Step-by-step explanation:

Given Two points are :

[tex] \tt( - 5,2) \: , \: (1,5)[/tex]

To Find:

The Slope

Solution:

We know that the formula of Slope is,

Note: Slope can be denoted as m.

[tex] \boxed{\sf \: m = \tt\cfrac{y_2-y_1}{ x_2-x_1}} [/tex]

Here,

[tex] \tt \: y_2 =5[/tex]

[tex] \tt \: y_1 = 2[/tex]

[tex] \tt \: x_2 = 1[/tex]

[tex] \tt \:x_1 = - 5[/tex]

So put their values accordingly:

[tex] \implies\sf \: m = \tt \cfrac{ 5 - 2}{1 - ( - 5)} [/tex]

Now Simplify it.

Firstly, Simplify The numerator:

  • Subtract 5 and 2 :-

[tex] \sf \implies \: m = \tt \cfrac{3}{1 - ( - 5)} [/tex]

Now, Simplify The denominator:

  • We know that (-) and (-) equals to (+).So,

[tex]\sf \implies{m} = \tt \cfrac{3}{1 + 5} [/tex]

  • Add 1 and 5:

[tex]\sf \implies{m} = \tt \cfrac{3}{6} [/tex]

Use cancellation method and cancel 3 and 6 by 3:

[tex]\sf \implies{m} = \tt \cfrac{ \cancel3 \: {}^{1}} { \cancel{6} \: {}^{2} } [/tex]

[tex]\sf \implies{m} =\tt \cfrac{1}{2} [/tex]

Hence, the slope of Two given points would be,

[tex] \boxed{\sf \: m = \tt \cfrac{1}{2}} [/tex]

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!

ACCESS MORE