Respuesta :
Answer:
Slope=1/2
Step-by-step explanation:
Slope=(y2-y1) /(x2-x1)
(-5,2)............x1=-5, y1=2
(1,5)..............x2=1, y2=5
Slope=(5-2)/(1-(-5))
Slope=3/(1+5)
Slope=3/6
Slope=1/2
Answer:
[tex]\boxed{\boxed{ \sf Slope/m = \tt \cfrac{1}{2}}} [/tex]
Step-by-step explanation:
Given Two points are :
[tex] \tt( - 5,2) \: , \: (1,5)[/tex]
To Find:
The Slope
Solution:
We know that the formula of Slope is,
Note: Slope can be denoted as m.
[tex] \boxed{\sf \: m = \tt\cfrac{y_2-y_1}{ x_2-x_1}} [/tex]
Here,
[tex] \tt \: y_2 =5[/tex]
[tex] \tt \: y_1 = 2[/tex]
[tex] \tt \: x_2 = 1[/tex]
[tex] \tt \:x_1 = - 5[/tex]
So put their values accordingly:
[tex] \implies\sf \: m = \tt \cfrac{ 5 - 2}{1 - ( - 5)} [/tex]
Now Simplify it.
Firstly, Simplify The numerator:
- Subtract 5 and 2 :-
[tex] \sf \implies \: m = \tt \cfrac{3}{1 - ( - 5)} [/tex]
Now, Simplify The denominator:
- We know that (-) and (-) equals to (+).So,
[tex]\sf \implies{m} = \tt \cfrac{3}{1 + 5} [/tex]
- Add 1 and 5:
[tex]\sf \implies{m} = \tt \cfrac{3}{6} [/tex]
Use cancellation method and cancel 3 and 6 by 3:
[tex]\sf \implies{m} = \tt \cfrac{ \cancel3 \: {}^{1}} { \cancel{6} \: {}^{2} } [/tex]
[tex]\sf \implies{m} =\tt \cfrac{1}{2} [/tex]
Hence, the slope of Two given points would be,
[tex] \boxed{\sf \: m = \tt \cfrac{1}{2}} [/tex]
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!