Answer:
3.3
Step-by-step explanation:
We determine the plane formed by [tex]u_1[/tex] and [tex]u_2[/tex]. The normal to the plane is given by their cross product:
[tex]u_1\times u_2[/tex]
[tex]\begin{pmatrix} - 2\\ - 4\\ 1 \end{pmatrix}\times\begin{pmatrix} - 4\\ 1 \\ - 4\end{pmatrix}=\begin{pmatrix} 15 \\ - 12\\ - 18\end{pmatrix}[/tex]
The equation of the plane is then given by
[tex]15x-12y-18z=0[/tex]
The distance between a vector [tex]\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}[/tex] and a plane [tex]Ax+By+Cz +D =0[/tex] is given by
[tex]d=\dfrac{|Ax_1+By_1+Cz_1 +D|}{\sqrt{A^2+B^2+C^2}}[/tex]
Comparing,
[tex]A = 15,\ B = - 12,\ C = -18,\ D = 0,\ x_1=3,\ y_1 =-8, \ z_1 =3[/tex]
Substituting,
[tex]d=\dfrac{|(15\times3)+(-12\times-8)+(-18\times3)+0|}{\sqrt{15^2+(-12)^2+(-18)^2}}[/tex]
[tex]d=\dfrac{|45+96-54|}{\sqrt{225+144+324}}=\dfrac{87}{\sqrt{693}}[/tex]
[tex]d =\dfrac{87}{26.32\ldots}\approx 3.3[/tex]