Answer:
Step-by-step explanation:
a)
[tex]\int\limits^2_1 {\frac{1}{x(lnx)^p} } \, dx[/tex]
this can be done by substitute lnx = u
dx/x = du
When x =1, u =0 and when x =2, u = ln 2
So integral = [tex]\int\limits^{ln2} _0 {du/u^p} \\\=\frac{u^{-p+1} }{-p+1}[/tex]
We find that this integral value is not definid for p =1
Hence for values of p other than 1, this converges.
When we substitute limits
[tex]\frac{1}{1-p} ((ln2)^{1-p} -1)[/tex]
and converges for p ≠1
b) [tex]\int\limits^1_0 {lnx}/x^p \, dx \\\int \frac{\ln \left(x\right)}{x^p}dx=\frac{1}{-p+1}x^{-p+1}\ln \left(x\right)-\frac{x^{-p+1}}{\left(-p+1\right)^2}+C[/tex]
So not converging for p =1
But ln x is defined only for x >0
So integral 0 to 1 makes this integral not valid and hence not convergent.