find the volume of the composite solid. Round your answer to the nearest tenth.

Answer:
Volume of the Figure [tex]=825.38m^3[/tex]
Step-by-step explanation:
Volume of the figure = Volume of the Upper cone+Volume of the lower cone
Volume of a cone = [tex]\pi *r^2*\frac{h}{3}[/tex]
Volume of the Upper Cone with
[tex]height=12m[/tex]
[tex]radius=6m[/tex]
[tex]3.14*6*6*\frac{12}{3}[/tex]
[tex]=3.14*6*6*4\\\\=3.14*36*4\\\\=3.14*144\\\\=147.14m^3[/tex]
Volume of the Lower cone with [tex]radius=6m[/tex] and [tex]height=18m[/tex]
[tex]=3.14*6*6*\frac{18}{3} \\\\=3.14*6*6*6\\\\=3.14*36*6\\\\=3.14*216\\\\=678.24m^3[/tex]
Volume of the Whole Figure = [tex]147.14+678.24[/tex]
Volume of the Figure [tex]=825.38m^3[/tex]