Answer with Explanation:
We are given that
Mass of block=m=4.9 kg
Initial velocity, u=0
[tex]F=(2.6-x^2) i N[/tex]
Initial position, x=0
a.We have to find the kinetic energy of the blocks as it passes through x=2.1 m
Work done=Kinetic energy=[tex]\int_{0}^{2.1}(2.6-x^2) dx[/tex]
Kinetic energy of the block=[tex][2.6 x-\frac{x^3}{3}]^{2.1}_{0}[/tex]
Kinetic energy of the block=[tex]2.6\times 2.1-\frac{(2.1)^3}{3}-0=2.373 J[/tex]
Kinetic energy of the block=2.373 J
b.Initial kinetic energy of block=[tex]K_i=\frac{1}{2}(4.9)(0)=0[/tex]
According to work energy theorem
[tex]W=K_f-K_i[/tex]
[tex]2.373 =k_f-0[/tex]
[tex]k_f=2.373 J[/tex]
Hence, the maximum kinetic energy of the block =2.373 J