Answer:
When x = 2.8 cm, [tex]B_{x1} = 0.0265 T[/tex]
When x = 5.5 cm, [tex]B_{x2} = 0.0209 T[/tex]
when x = 7.3 cm, [tex]B_{x3} = 0.0169 T[/tex]
When x = 11.0 cm, [tex]B_{x4} = 0.0103 T[/tex]
Explanation:
According to Biot-Savart law,
[tex]B_{x} = \frac{N \mu_{o}IR^{2} }{2(x^{2} +R^{2} )^{3/2} }\\[/tex].......................(1)
R = 11.0 cm = 0.11 m
I = 17.0 A
N = 300 turns
[tex]\mu_{o} = 4\pi * 10^{-7} N/A^{2}[/tex]
When x₁ = 2.8 cm = 0.028 m
[tex]B_{x1} = \frac{300 *(4\pi * 10^{-7} ) * 17 *0.11^{2} }{2(0.028^{2} +0.11^{2} )^{3/2} }\\B_{x1} = 0.0265 T[/tex]
When x₂ = 5.5cm = 0.055 m
[tex]B_{x2} = \frac{300 *(4\pi * 10^{-7} ) * 17 *0.11^{2} }{2(0.055^{2} +0.11^{2} )^{3/2} }\\B_{x2} = 0.0209 T[/tex]
When x₃ = 7.3 cm = 0.073 m
[tex]B_{x3} = \frac{300 *(4\pi * 10^{-7} ) * 17 *0.11^{2} }{2(0.073^{2} +0.11^{2} )^{3/2} }\\B_{x3} = 0.0169 T[/tex]
When X₄ = 11.0 cm = 0.11 m
[tex]B_{x4} = \frac{300 *(4\pi * 10^{-7} ) * 17 *0.11^{2} }{2(0.11^{2} +0.11^{2} )^{3/2} }\\B_{x4} = 0.0103 T[/tex]