Leonardo wrote an equation that has an infinite number of solutions. One of the terms in Leonardo’s equation is missing, as shown below.
![Leonardo wrote an equation that has an infinite number of solutions One of the terms in Leonardos equation is missing as shown below class=](https://us-static.z-dn.net/files/dfb/2fbfe7b305e15b93bedaaf2d6ee08ac7.jpg)
Answer:
3x
Step-by-step explanation:
-(x-1) +5 = 2(x+3) - c
C is the unknown term
Distribute the negative sign and the 2
-x+1 +5 = 2x+6 -c
Combine like terms
-x+6 = 2x +6-c
Solve for c
Add x to each side
-x+x +6 = 2x+x +6-c
6 = 3x+6 -c
Add c to each side
6+c = 3x +6 -c+c
c+6 = 3x+6
Subtract 6 from each side
c+6-6 = 3x+6-6
c = 3x
When c = 3x, the two sides of the equation are equal, and the solutions are infinite.
Answer: [tex]3x[/tex]
Step-by-step explanation:
Let be "z" the missing term:
[tex]-(x-1)+5=2(x+3)-z[/tex]
For the system to have infinite number of solutions, [tex]2(x+3)-z[/tex] must be equal to [tex]-(x-1)+5[/tex].
Now you must solve for "z". Apply Distributive property:
[tex]-x+1+5=2x+6-z[/tex]
Add the like terms on the left side:
[tex]-x+6=2x+6-z[/tex]
Now you need to subtract [tex]2x[/tex] and 6 from both sides of the equation and finally you can multiply both sides by -1. Then:
[tex]-x+6-2x-6=2x+6-z-2x-6\\\\(-1)-3x=-z(-1)\\\\z=3x[/tex]