Respuesta :
Answer:
B. 0.4542 to 0.5105
Step-by-step explanation:
A 90% confidence interval for p is calculated as:
[tex]p-z_{\alpha /2}\sqrt{\frac{p(1-p)}{n} }\leq p\leq p+z_{\alpha /2}\sqrt{\frac{p(1-p)}{n} }[/tex]
This apply if n*p≥5 and n*(1-p)≥5
Where p is the proportion of sample, n is the size of the sample and [tex]z_{\alpha /2}[/tex] is equal to 1.645 for a 90% confidence.
Then, in this case p, n*p and n*(1-p) are calculated as:
[tex]p=\frac{410}{850} =0.4824[/tex]
n*p = (850)(0.4824) = 410
n*(1-p) = (850)(1-0.4824) = 440
So, replacing values we get:
[tex]0.4824-1.645\sqrt{\frac{0.4824(1-0.4824)}{850} }\leq p\leq 0.4824+1.645\sqrt{\frac{0.4824(1-0.4824)}{850} }[/tex]
[tex]0.4824-0.0282\leq p\leq 0.4824+0.0282[/tex]
[tex]0.4542\leq p\leq 0.5105[/tex]
It means that a 90% confidence interval for p is 0.4542 to 0.5105
Answer:
The correct answer in the option is;
B. 0.4542 to 0.5105.
Step-by-step explanation:
To solve the question, we note that
Total number of residents, n = 850
Number supporting property tax levy = 410
Proportion supporting tax levy, p = [tex]\frac{410}{850}[/tex] = 0.48235
The formula for confidence interval is
[tex]p +/-z*\sqrt{\frac{p(1-p)}{n} }[/tex]
Where
z = z value
The z value from the tables at 90 % = 1.64
Therefore we have
The confidence interval given as
[tex]0.48235 +/-1.64*\sqrt{\frac{0.48235(1-0.48235)}{850} }[/tex] = 0.48235 ± 2.811 × 10⁻²
= 0.4542 to 0.5105
The confidence interval is 0.4542 to 0.5105.