Respuesta :

Option B:

m∠C = 35°

Solution:

Given data:  

m(ar BD) = 30°  and m(ar AE) = 100°

To find the measure of angle C:  

We know that,

Angle formed by two intersecting secants outside the circle is equal to half of the difference between the intercepted arcs.

[tex]$m \angle C=\frac{1}{2}({arc} \ AE-{arc} \ BD)[/tex]

        [tex]$=\frac{1}{2}{( 100^\circ-30^\circ )[/tex]

        [tex]$=\frac{1}{2}\times {70^\circ[/tex]

       = 35°

m∠C = 35°

Option B is the correct answer.