Respuesta :
Answer:
A) H = 4K(T2-T1) / b -a
B) T(r) = T2 - ( T2 - T1 )*((r-a)/(b-a)) *(b/r)
C) H = 2(T2-T1) / ln [tex]\left \{ {{b} \atop {a}} \right}.[/tex]
Explanation:
Inner radii = a
outer radii = b
thermal conductivity = k
difference between inside and outside shell = dt
surface area of sphere = 4[tex]\pi r^2[/tex]
surface area of the curved side of a cylinder = 2[tex]\pi rl[/tex]
A) An equation for the total heat current through the shell
using the formula for thermal conductivity of a material which is H = [tex]\frac{kAdt}{dr}[/tex]
H = [tex]\frac{K(4\pi r^2)dt}{dr}[/tex] therefore [tex]\frac{Hdr}{4\pir^2 } = kdt[/tex] ---------- equation 1
integrate equation 1 using a and b as limits
[tex]\frac{H}{4\pir^2 } (\frac{1}{a} - \frac{1}{b}) = k (T2-T1)[/tex]
if T2 > T1 then change in temperature [tex]\frac{dt}{dr} < 0[/tex] hence H = [tex]\frac{4K\piab(T2-T1) }{b-a}[/tex]
B) Derive an equation for the temperature variation within the shell in part A
[tex]\frac{dt}{dr} = \frac{B}{r^2}[/tex] --------- equation 2
B = [tex]\frac{H}{4\pi k}[/tex]
integrating equation 2 from r = a to r
T(r) - T2 = B[tex](\frac{1}{a}-\frac{1}{r})[/tex]
also integrating equation 2 from r = a to r = b
T1 - R2 = B[tex](\frac{1}{a}-\frac{1}{b})[/tex]
eliminate B by using the second integration gives the equation as
T(r) = T2 - ( T2 - T1 ) [tex](\frac{r-a}{b-a} )(\frac{b}{r} )[/tex]
if r = a T = T1 and at r = b; T = T1
C) An equation for the total heat current through the walls of the cylinder
H = k ( 2[tex]\pi rl[/tex] ) [tex]\frac{dt}{dr}[/tex]
[tex]\frac{H}{2*\pi r } = kLdt[/tex] ----- equation 3
integrating equation 3 within given limits a and b
[tex]\frac{H}{2*\pi r} ln (\frac{b}{a} ) = kL ( T2 - T1 )[/tex]
therefore H = [tex]\frac{2\pikL(T2 - T1) }{ln\left \{ {{b} \atop {a}} \right. }[/tex]