Answer:
The final temperature when the lead and water reach thermal equilibrium is [tex]23.14^{o} C[/tex]
Explanation:
Using the law of conservation of energy the heat lost by the lead ball is gained by the water.
[tex]-q_{L} =+q_{w}[/tex] .............................1
where
[tex]q_{L}[/tex] is the heat energy of the lead ball;
[tex]q_{w}[/tex] is the heat energy of water;
but q = msΔ
T...............................2
substituting expression in equation 2 into the equation 1;
Δ
T =Δ
T .............................3
where [tex]m_{L}[/tex] is the mass of the lead ball = 5.2 g
[tex]s_{L}[/tex] is the specific heat capacity of the lead ball = 0.128 Joules/g-deg
[tex]m_{w}[/tex] is the mass of water = volume x density = 34.5 ml x 1 g/ml = 34.5 g
[tex]s_{w}[/tex] is the specific heat capacity of water = 4.184 J/g-deg
Δ
T is the temperature changes encountered by the lead ball and water respectively
inputting the values of the parameters into equation 3
5.2 g x 0.128 Joules/g-deg x (183-22.4) = 34.5 g x 4.184 J/g-deg x ([tex]T_{2}[/tex] -22.4)
[tex]T_{2}[/tex] -22.4 = [tex]\frac{106.9}{144.3}[/tex]
[tex]T_{2}[/tex] -22.4 = 0.7408
[tex]T_{2}[/tex] = [tex]23.14^{o} C[/tex]
Therefore the final temperature when the lead and water reach thermal equilibrium is [tex]23.14^{o} C[/tex]