Given the following functions:

g(f(x))

f ( x ) = x^2

g ( x ) = x − 3

Find the composition of the two functions and show your process:

There are no options

Respuesta :

Answer:

The composition of the two functions are [tex](fog)(x)=f(g(x))=x^2-6x+9[/tex] and [tex](gof)(x)=g(f(x))[/tex]

Step-by-step explanation:

Given two functions are

[tex]f(x)=^2[/tex]

and [tex]g(x)=x-3[/tex]

Now to find the composition of f and composition of g and f

ie, [tex](fog)(x)=f(g(x))[/tex]

and [tex](gof)(x)=g(f(x))[/tex]

[tex](fog)(x)=f(g(x))[/tex]

           [tex]=f(x-3)[/tex]

           [tex]=(x-3^2)[/tex]

         Now to find the composition of f and composition of  [tex]=x^2-2x(3)+3^2[/tex]

[tex](fog)(x)=x^2-6x\div 9[/tex]

[tex](gof)(x)=g(f(x))[/tex]

[tex]=g(x^2)[/tex]

[tex](gof)(x)=x^2-3[/tex]

The composition of the two functions are [tex](gof)(x)=g(f(x))=x^2-3[/tex]

Answer:

(gof)(x)=g(f(x))(gof)(x)=g(f(x))

hope it helps

please mark Brainliest

ACCESS MORE