Answer:
Normal Quantile Plot
Step-by-step explanation:
We are given the following in the question:
40.3 , 34.8 , 31.8 , 38.2 , 44.2
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]\mu =\displaystyle\frac{189.3}{5} = 37.86[/tex]
Sum of squares of differences = 92.352
[tex]\sigma = \sqrt{\dfrac{92.352}{4}} = [/tex]
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
[tex]x = 40.3\Rightarrow z = \dfrac{40.3-37.86}{4.8049} = 0.50\\\\x = 34.8\Rightarrow z = \dfrac{34.8-37.86}{4.8049} = -0.63\\\\x = 31.8\Rightarrow z = \dfrac{31.8-37.86}{4.8049} = -1.26\\\\x = 38.2\Rightarrow z = \dfrac{38.2-37.86}{4.8049} = 0.07\\\\x = 44.2\Rightarrow z = \dfrac{44.2-37.86}{4.8049} = 1.32\\[/tex]
The attached image shows the normal quantile plot.