Respuesta :
Answer:
(a) 181.05 m/s²
(b) 13.2°
Explanation:
Given:
Radius of the circle (R) = 0.610 m
Angular acceleration (α) = 67.6 rad/s²
Angular speed (ω) = 17.0 rad/s
(a)
Radial acceleration of the ball is given as:
[tex]a_r=\omega^2R[/tex]
Plug in the given values and solve for [tex]a_r[/tex]. This gives,
[tex]a_r=(17.0\ rad/s)^2\times (0.610\ m)\\\\a_r=289\times 0.610\ m/s^2\\\\a_r=176.29\ m/s^2[/tex]
Now, tangential acceleration is given by the formula:
[tex]a_t=R\alpha[/tex]
Plug in the given values and solve for [tex]a_t[/tex]. This gives,
[tex]a_t=(0.610\ m)(67.6\ rad/s^2)\\\\a_t=41.236\ m/s^2[/tex]
Now, the magnitude of total acceleration is given as the square root of the sum of the squares of tangential and centripetal accelerations. Therefore,
[tex]a_{Total}=\sqrt{(a_r)^2+(a_t)^2}[/tex]
Plug in the given values and solve for total acceleration, [tex]a_{Total}[/tex]. This gives,
[tex]a_{Total}=\sqrt{(176.29)^2+(41.236)^2}\\\\a_{Total}=181.05\ m/s^2[/tex]
Therefore, the magnitude of total acceleration is 181.05 m/s².
(b)
Angle of total acceleration relative to radial direction is given by the formula:
[tex]\theta=\tan^{-1}(\frac{a_t}{a_r})\\\\\theta=\tan^{-1}(\frac{41.236}{176.29})\\\\\theta=13.2\°[/tex]
Therefore, the total acceleration makes an angle of 13.2° relative to radial direction.