Answer:
[tex]W=\frac{p_0V_0-p_1V_1}{\gamma-1}[/tex]
Explanation:
An adiabatic process refers to one where there is no exchange of heat.
The equation of state of an adiabatic process is given by,
[tex]pV^{\gamma}=k[/tex]
where,
[tex]p[/tex] = pressure
[tex]V[/tex] = volume
[tex]\gamma=\frac{C_p}{C_V}[/tex]
[tex]k[/tex] = constant
Therefore, work done by the gas during expansion is,
[tex]W=\int\limits^{V_1}_{V_0} {p} \, dV[/tex]
[tex]=k\int\limits^{V_1}_{V_0} {V^{-\gamma}} \, dV[/tex]
[tex]=\frac{k}{\gamma -1} (V_0^{1-\gamma}-V_1^{1-\gamma})\\[/tex]
(using [tex]pV^{\gamma}=k[/tex] )
[tex]=\frac{p_0V_0-p_1V_1}{\gamma-1}[/tex]