Answer:
95% Confidence interval: (7.152 ,8.448)
Step-by-step explanation:
We are given the following in the question:
Sample data: 7.9, 8.6, 8.0, 9.2, 7.4, 7.4, 8.8, 7.5, 6.6, 8.0, 9.1, 5.5, 7.3, 8.9, 5.7
Population mean, μ = 8 seconds
Sample mean, [tex]\bar{x}[/tex] = 7.8
Sample size, n = 15
Alpha, α = 0.05
Sample standard deviation, s = 1.170
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 14 and}~\alpha_{0.05} = \pm 2.144[/tex]
[tex]7.8 \pm 2.144(\frac{1.170}{\sqrt{15}} ) = 7.8 \pm 0.648 = (7.152 ,8.448)[/tex]