Respuesta :
Answer:
Part 1: The transfer function of the system is given as [tex]K_me^{-j\omega t_m}+K_ge^{-j\omega t_g}[/tex]
Part 2: The transfer function of the equalization system is [tex]\frac{1}{K_me^{-j\omega t_m}}[/tex]
Explanation:
Part 1
[tex]TF_{sys}=\frac{FT[OP]}{FT[IP]}\\TF_{sys}=\frac{FT[K_mx_t(t-t_m)+K_gx_t(t-t_g]}{FT[x(t)]}\\TF_{sys}=\frac{K_mx_t(\omega)e^{-j\omega t_m}+K_gx_t(\omega)e^{-j\omega t_g}}{x_t(\omega)}\\TF_{sys}=\frac{x_t(\omega)[K_me^{-j\omega t_m}+K_ge^{-j\omega t_g}]}{x_t(\omega)}\\TF_{sys}=K_me^{-j\omega t_m}+K_ge^{-j\omega t_g}[/tex]
The transfer function of the system is [tex]K_me^{-j\omega t_m}+K_ge^{-j\omega t_g}[/tex]
Part 2
As the equalization system is a system which compensate the effects of the system thus if the transfer function of the equalization system is given as [tex]TF_{eq}[/tex]
Than
[tex]TF_{sys} \times TF_{eq}=1[/tex]
or
[tex]TF_{eq}=\frac{1}{TF_{sys} }\\TF_{eq}=\frac{1}{K_me^{-j\omega t_m}+K_ge^{-j\omega t_g}}[/tex]
As it is given that Km>>Kg thus ignoring the values with Kg multiplier yields
[tex]TF_{eq}=\frac{1}{K_me^{-j\omega t_m}}[/tex]
So the transfer function of the equalization system is [tex]\frac{1}{K_me^{-j\omega t_m}}[/tex]
![Ver imagen danialamin](https://us-static.z-dn.net/files/d62/d936ed816a2fa204b02234ddd2fdbc84.png)