Respuesta :
Answer:
A) 967.60
B) 944.65
C) 897.26
D)1,033.87
E)1,059.71
F)1,124.09
Explanation:
We must calcualte the present vale of the coupon payment and maturity at the gven market rate and time
A)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 4
rate 0.09
[tex]80 \times \frac{1-(1+0.09)^{-4} }{0.09} = PV\\[/tex]
PV $259.1776
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 4.00
rate 0.09
[tex]\frac{1000}{(1 + 0.09)^{4} } = PV[/tex]
PV 708.43
PV c $259.1776
PV m $708.4252
Total $967.6028
B)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 8
rate 0.09
[tex]80 \times \frac{1-(1+0.09)^{-8} }{0.09} = PV\\[/tex]
PV $442.7855
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 8.00
rate 0.09
[tex]\frac{1000}{(1 + 0.09)^{8} } = PV[/tex]
PV 501.87
PV c $442.7855
PV m $501.8663
Total $944.6518
C)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 30
rate 0.09
[tex]80 \times \frac{1-(1+0.09)^{-30} }{0.09} = PV\\[/tex]
PV $821.8923
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 30.00
rate 0.09
[tex]\frac{1000}{(1 + 0.09)^{30} } = PV[/tex]
PV 75.37
PV c $821.8923
PV m $75.3711
Total $897.2635
D)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 4
rate 0.07
[tex]80 \times \frac{1-(1+0.07)^{-4} }{0.07} = PV\\[/tex]
PV $270.9769
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 4.00
rate 0.07
[tex]\frac{1000}{(1 + 0.07)^{4} } = PV[/tex]
PV 762.90
PV c $270.9769
PV m $762.8952
Total $1,033.8721
E)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 8
rate 0.07
[tex]80 \times \frac{1-(1+0.07)^{-8} }{0.07} = PV\\[/tex]
PV $477.7039
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 8.00
rate 0.07
[tex]\frac{1000}{(1 + 0.07)^{8} } = PV[/tex]
PV 582.01
PV c $477.7039
PV m $582.0091
Total $1,059.7130
F)
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 80.000
time 30
rate 0.07
[tex]80 \times \frac{1-(1+0.07)^{-30} }{0.07} = PV\\[/tex]
PV $992.7233
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 30.00
rate 0.07
[tex]\frac{1000}{(1 + 0.07)^{30} } = PV[/tex]
PV 131.37
PV c $992.7233
PV m $131.3671
Total $1,124.0904
- The price of the 4-year bond if its yield increases to 9% is $967.03.
- The price of the 4-year bond if its yield decreases to 7% is $1033.87.
- The price of the 8-year bond if its yield increases to 9% is $944.65.
- The price of the 8-year bond if its yield decreases to 7% is $1059.71.
- The price of the 30-year bond if its yield increases to 9% is $821.89.
- The price of the 30-year bond if its yield decreases to 7% is $992.72
What is the price of the bonds?
The price of the bonds can be determined by calculating the present value of the bonds. Present value is the sum of discounted cash flows.
Present value can be calculated with a fiancial calculator.
Cash flow each year from year 1 to 4 = $80
Cash flow in year 4 = 1000
Price when yield is 9% = $967.03.
Price when yield is 7% = $1033.87.
Cash flow each year from year 1 to 8 = $80
Cash flow in year 8 = 1000
Price when yield is 9% = $944.65.
Price when yield is 7% = $1059.71.
Cash flow each year from year 1 to 30 = $80
Cash flow in year 30 = 1000
Price when yield is 9% = $821.89.
Price when yield is 7% = $992.72
To learn more about present value, please check: https://brainly.com/question/26537392