Answer:
The rate at which [tex]P_4[/tex] is being produced is 0.0228 M/s.
The rate at which [tex]PH_3[/tex] is being consumed is 0.0912 M/s.
Explanation:
[tex]4PH_3\rightarrow P_4(g)+6H_2(g)[/tex]
Rate of the reaction : R
[tex]R=\frac{-1}{4}\frac{d[PH_3]}{dt}=\frac{1}{6}\frac{d[H_2]}{dt}=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
The rate at which hydrogen is being formed = [tex]\frac{d[H_2]}{dt}=0.137 M/s[/tex]
[tex]R=\frac{1}{6}\frac{d[H_2]}{dt}[/tex]
[tex]R=\frac{1}{6}\times 0.137 M/s=0.0228 M/s[/tex]
The rate at which [tex]P_4[/tex] is being produced:
[tex]R=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
[tex]0.0228 M/s=\frac{1}{1}\frac{d[P_4]}{dt}[/tex]
The rate at which [tex]PH_3[/tex] is being consumed :
[tex]R=\frac{-1}{4}\frac{d[PH_3]}{dt}[/tex]
[tex]0.0228 M/s\times 4=\frac{-1}{1}\frac{d[PH_3]}{dt}[/tex]
[tex]\frac{-1}{1}\frac{d[PH_3]}{dt}=0.912 M/s[/tex]