Respuesta :
The length of the rug is 4 ft.
The width of the rug is 2.5 ft.
Explanation:
The area of the rug is 10 ft.
The length of the rug be l.
Let us convert the inches to feet.
Thus, [tex]18 inches = 1.5 ft[/tex]
Thus, the length of the rug is [tex]l=1.5+w[/tex]
Let the width of the rug be w.
Substituting these values in the formula of area of the rectangle, we get,
[tex]A=length\times width[/tex]
[tex]10=(1.5+w)(w)\\10=1.5w+w^2\\w^2+1.5w-10=0[/tex]
Solving the expression using the quadratic formula,
[tex]$w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$[/tex]
Substituting the values, we have,
[tex]$w=\frac{-15 \pm \sqrt{15^{2}-4 \cdot 10(-100)}}{2 \cdot 10}\\[/tex]
[tex]$w=\frac{-15 \pm \sqrt{4225}}{20}$[/tex]
[tex]$w=\frac{-15 \pm 65}{2 0}$[/tex]
Thus,
[tex]w=\frac{-15 + 65}{2 0}\\w=\frac{50}{20} \\w=2.5[/tex] and [tex]w=\frac{-15 - 65}{2 0}\\w=\frac{-80}{20} \\w=-4[/tex]
Since, the value of w cannot be negative, the value of w is 2.5ft
Thus, the width of the rug is 2.5ft
Substituting [tex]w=2.5[/tex] in [tex]l=1.5+w[/tex], we get,
[tex]l=1.5+2.5\\l=4[/tex]
Thus, the length of the rug is 4 ft.