If a 430 mL ordinary glass beaker is filled to the brim with ethyl alcohol at a temperature of 6.00°C, how much (in mL) will overflow when their temperature reaches 22.0°C?

Respuesta :

Answer : The volume of ethyl alcohol overflow will be, 7.49 mL

Explanation :

To calculate the volume of ethyl alcohol overflow we are using formula:

[tex]\Delta V=V_o(\alpha \Delta T)\\\\\Delta V=V_o\times \alpha \times (T_2-T_1)[/tex]

where,

[tex]\Delta V[/tex] = volume expand = ?

[tex]\alpha[/tex] = volumetric expansion coefficient = [tex]0.00109/^oC[/tex]

[tex]V_o[/tex] = initial volume = 430 mL

[tex]T_2[/tex] = final temperature = [tex]22.0^oC[/tex]

[tex]T_1[/tex] = initial temperature = [tex]6.00^oC[/tex]

Now put all the given values in the above formula, we get:

[tex]\Delta V=(430mL)\times (0.00109/^oC)\times (22.0-6.00)^oC[/tex]

[tex]\Delta V=7.49mL[/tex]

Thus, the volume of ethyl alcohol overflow will be, 7.49 mL

Answer:

7.3094 ml

Explanation:

Initial volume of the glass, Vo = 430 ml

Initial temperature, T1 = 6°C

final temperature, T2 = 22°C

Temperature coefficient of glass, γg = 27.6 x 10^-6 /°C

Temperature ethyl alcohol, γa = 0.00109 /°C

Use the formula of expansion of substances

Expansion in volume of glass

ΔVg = Vo x γg x ΔT

ΔVg = 430 x 27.6 x 10^-6 x 16 = 0.1898 ml

Expansion in volume of ethyl alcohol

ΔVa = Vo x γa x ΔT

ΔVa = 430 x 0.00109 x 16 = 7.4992 ml

The amount of volume over flow is

ΔV = ΔVa - ΔVg

ΔV = 7.4992 - 0.1898

ΔV = 7.3094 ml

Thus, the amount of ethyl alcohol over flow is 7.3094 ml.