Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α = [tex]\frac{wf}{t}[/tex] = [tex]\frac{1.4 rad/s}{21 s} = 0.067 rad/s2[/tex]
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²