From the question;
Point A is at (2,2)
Point B is the reflection of point A across the x-axis;
The rule for reflection across the x-axis is;
[tex](x,y)\rightarrow(x,-y)[/tex]So, point B will be;
[tex]A(2,2)\rightarrow B(2,-2)[/tex]The point C is 5 units directly left of point B;
So, point C will be;
[tex]\begin{gathered} (x,y)\rightarrow(x-5,y) \\ B(2,-2)\rightarrow C(2-5,-2) \\ B(2,-2)\rightarrow C(-3,-2) \end{gathered}[/tex]Therefore, the coordinates of the Points A, B and C are;
[tex]\begin{gathered} A(2,2) \\ B(2,-2) \\ C(-3,-2) \end{gathered}[/tex]Shown as;
So, the length AB is;
[tex]AB=2-(-2)=4[/tex]The length BC is;
[tex]undefined[/tex]