A proton orbits just at the surface of a charged sphere of radius 3.53 cm. If the speed of the proton is 2.02 X105 m/s, what is the charge on the sphere?

Respuesta :

To solve this problem, apply the equilibrium condition given from the electrostatic force and the centripetal force of the body. Said equilibrium condition can be described under the function,

[tex]F_c = F_q[/tex]

[tex]\frac{mv^2}{r} = \frac{kQ_{proton}Q_{Sphere}}{r^2}[/tex]

Here,

m = Mass of proton

Q = Charge of each object

k = Coulomb's constant

v = Velocity

Our values are given as,

[tex]q= 1.6*10^{-19} C[/tex]

[tex]m = 1.67*10^{-27} kg[/tex]

[tex]v = 2.02* 10^5m/s[/tex]

[tex]r = 3.53cm = 3.53*10^{-2} m[/tex]

Rearranging and replacing we have,

[tex]\frac{mv^2}{r} = \frac{kQ_{proton}Q_{Sphere}}{r^2}[/tex]

[tex]Q_{sphere}= \frac{mv^2 r }{kQ_{proton}}[/tex]

[tex]Q_{sphere} = \frac{(1.67*10^{-27})(2.02*10^5)^2(3.53*10^{-2})}{(9*10^9)(1.6*10^{-19})}[/tex]

[tex]Q_{Sphere} = 1.6704*10^{-9}C[/tex]

[tex]Q_{Sphere} = 1.67nC[/tex]

Therefore the charge on the Sphere is 1.67nC

RELAXING NOICE
Relax