To solve this problem, apply the equilibrium condition given from the electrostatic force and the centripetal force of the body. Said equilibrium condition can be described under the function,
[tex]F_c = F_q[/tex]
[tex]\frac{mv^2}{r} = \frac{kQ_{proton}Q_{Sphere}}{r^2}[/tex]
Here,
m = Mass of proton
Q = Charge of each object
k = Coulomb's constant
v = Velocity
Our values are given as,
[tex]q= 1.6*10^{-19} C[/tex]
[tex]m = 1.67*10^{-27} kg[/tex]
[tex]v = 2.02* 10^5m/s[/tex]
[tex]r = 3.53cm = 3.53*10^{-2} m[/tex]
Rearranging and replacing we have,
[tex]\frac{mv^2}{r} = \frac{kQ_{proton}Q_{Sphere}}{r^2}[/tex]
[tex]Q_{sphere}= \frac{mv^2 r }{kQ_{proton}}[/tex]
[tex]Q_{sphere} = \frac{(1.67*10^{-27})(2.02*10^5)^2(3.53*10^{-2})}{(9*10^9)(1.6*10^{-19})}[/tex]
[tex]Q_{Sphere} = 1.6704*10^{-9}C[/tex]
[tex]Q_{Sphere} = 1.67nC[/tex]
Therefore the charge on the Sphere is 1.67nC