rate of heat radiation by the body is given by
[tex]\frac{dQ}{dt} = \sigma e A(T^4 - T_s^4)[/tex]
here we know that
[tex]\sigma = 5.67 \times 10^{-8}[/tex]
e = 0.7
[tex]A = 1.5 m^2[/tex]
[tex]T = 34.5 + 273 = 307.5 k[/tex]
[tex]T_s = 21 + 273 = 294 k[/tex]
now from above formula rate of heat dissipation
[tex]\frac{dQ}{dt} = (5.67 \times 10^{-8}}(0.7)(1.5)(307.5^4 - 294^4)[/tex]
[tex]\frac{dQ}{dt} = 87.5 [/tex]
now we know that
[tex]Q = ms \Delta T[/tex]
from above equation
[tex]\frac{dQ}{dt} = ms\frac{dT}{dt}[/tex]
now we have
[tex]m s \frac{dT}{dt} = 87.5[/tex]
here we have
m = 96 kg
s = 3500
[tex]96 \times 3500 \times \frac{dT}{dt} = 87.5[/tex]
[tex]\frac{dT}{dt} = (2.6 \times 10^{-4}) \: ^0C/s[/tex]
[tex]\frac{dT}{dt} = 0.94 ^0 C/hour[/tex]