Respuesta :

Answer:

The equation of line in slop-intercept form  is y = [tex]\dfrac{-2x}{5}[/tex] + [tex]\dfrac{3}{2}[/tex]

Step-by-step explanation:

Given as :

The slope of the a line = m = [tex]\dfrac{-2}{5}[/tex]

The line is passes through points [tex]x_1 , y_1[/tex] = 15 , [tex]\dfrac{- 9}{2}[/tex]

According to question

Equation of line in slope - intercept form

y - [tex]y_1[/tex] = m × ( x - [tex]x_1[/tex] )

Or, y - ([tex]\dfrac{- 9}{2}[/tex] ) =  [tex]\dfrac{-2}{5}[/tex] × ( x - 15 )

Or, y  - ([tex]\dfrac{- 9}{2}[/tex] ) =  [tex]\dfrac{-2}{5}[/tex] ×  x  - ( [tex]\dfrac{-2}{5}[/tex] ) × 15

Or, y  - ([tex]\dfrac{- 9}{2}[/tex] ) =  [tex]\dfrac{-2}{5}[/tex] ×  x  + 6

Or, y =   [tex]\dfrac{-2}{5}[/tex] ×  x  + 6 - [tex]\dfrac{9}{2}[/tex]

Or, y =   [tex]\dfrac{-2}{5}[/tex] ×  x  + [tex]\dfrac{12-9}{2}[/tex]

Or, y = [tex]\dfrac{-2}{5}[/tex] ×  x + [tex]\dfrac{3}{2}[/tex]

So, The equation of line in slop-intercept form  y = [tex]\dfrac{-2}{5}[/tex] ×  x + [tex]\dfrac{3}{2}[/tex]

Hence, The equation of line in slop-intercept form  is y = [tex]\dfrac{-2x}{5}[/tex] + [tex]\dfrac{3}{2}[/tex]  Answer

RELAXING NOICE
Relax