Answer:
The equation of line in slop-intercept form is y = [tex]\dfrac{-2x}{5}[/tex] + [tex]\dfrac{3}{2}[/tex]
Step-by-step explanation:
Given as :
The slope of the a line = m = [tex]\dfrac{-2}{5}[/tex]
The line is passes through points [tex]x_1 , y_1[/tex] = 15 , [tex]\dfrac{- 9}{2}[/tex]
According to question
Equation of line in slope - intercept form
y - [tex]y_1[/tex] = m × ( x - [tex]x_1[/tex] )
Or, y - ([tex]\dfrac{- 9}{2}[/tex] ) = [tex]\dfrac{-2}{5}[/tex] × ( x - 15 )
Or, y - ([tex]\dfrac{- 9}{2}[/tex] ) = [tex]\dfrac{-2}{5}[/tex] × x - ( [tex]\dfrac{-2}{5}[/tex] ) × 15
Or, y - ([tex]\dfrac{- 9}{2}[/tex] ) = [tex]\dfrac{-2}{5}[/tex] × x + 6
Or, y = [tex]\dfrac{-2}{5}[/tex] × x + 6 - [tex]\dfrac{9}{2}[/tex]
Or, y = [tex]\dfrac{-2}{5}[/tex] × x + [tex]\dfrac{12-9}{2}[/tex]
Or, y = [tex]\dfrac{-2}{5}[/tex] × x + [tex]\dfrac{3}{2}[/tex]
So, The equation of line in slop-intercept form y = [tex]\dfrac{-2}{5}[/tex] × x + [tex]\dfrac{3}{2}[/tex]
Hence, The equation of line in slop-intercept form is y = [tex]\dfrac{-2x}{5}[/tex] + [tex]\dfrac{3}{2}[/tex] Answer