Answer:
2/9
Step-by-step explanation:
given that a set of 10 cards consists of 5 red cards and 5 black cards. The cards are shuffled thoroughly and you turn cards over, one at a time, beginning with the top card.
Let X be the number of cards you turn over until you observe the first red card.
X can take values as 1,2,3,4,5 or 6.
No other possibility because at the worst 6th card has to be red
P(X>2) = 1-(P(X=1)+P(x=2))
P(X=1) = Prob for I card to be red = [tex]\frac{1}{2}[/tex]
P(x=2) Prob for I card black and second red = [tex]\frac{5*5}{10*9} =\frac{5}{18}[/tex]
[tex]P(X>2) = 1-(\frac{1}{2} +\frac{5}{18} )\\= \frac{2}{9}[/tex]