Respuesta :

Answer:

[tex]v=<2,2\sqrt 3>[/tex]

Explanation:

We are given that

Magnitude of vector v=[tex]\mid v\mid =4[/tex]

v lies in the first quadrant

[tex]\theta=\frac{\pi}{3}[/tex]

[tex]v_x=\mid v\mid cos\theta[/tex]

[tex]v_y=\mid v\mid sin\theta[/tex]

Substitute the values then we get

[tex]v_x=4cos\frac{\pi}{3}[/tex]

[tex]v_x=4\times \frac{1}{2}=2[/tex]

[tex]cos\frac{\pi}{3}=\frac{1}{2}[/tex]

[tex]v_y=4\times sin\frac{\pi}{3}=4\times \frac{\sqrt 3}{2}=2\sqrt 3[/tex]

[tex]sin\frac{\pi}{3}=\frac{\sqrt 3}{2}[/tex]

Therefore, the vector v in component form[tex]=<v_x,v_y>[/tex]

[tex]v=<2,2\sqrt 3>[/tex]

ACCESS MORE