Answer:
(a) -dA/dt = kA², A₀ = 10
(b) A =10/(1+ kt)
(c) t > 60 h
Step-by-step explanation:
(a) Find the IVP
A differential equation with an initial condition y₀ = f(x₀) is called an initial value problem.
The rate of decrease of A is proportional to A², and A₀ = 10, so the IVP is
-dA/dt = kA², A₀ = 10
(b) Solve the IVP
[tex]\begin{array}{rcl}-\dfrac{\text{d}A}{\text{d}t} & = & kA^{2}\\\\\dfrac{\text{d}A}{A^{2}} & =&-k\text{d}t\\\\-\dfrac{1}{A} & = & -kt + C\\\\\dfrac{1}{A} & = & kt + C\\\\\end{array}[/tex]
Apply the initial condition: A₀ = 10 (when t = 0)
[tex]\dfrac{1}{10} = C\\\\\dfrac{1}{A} = kt + \dfrac{1}{10}\\\\\dfrac{10}{A} = 10kt + 1\\\\\mathbf{A} = \mathbf{\dfrac{10}{1+ kt}}[/tex]
(c) Find the time when A(t) < 1
(i) Find the value of k (A₁₀ = 4)
[tex]\begin{array}{rcl}A& =&\dfrac{10}{1+ kt}\\\\4 & =& \dfrac{10}{1 + 10k}\\\\4 + 40 k & = & 10\\\\40k & = & 6\\k & = & 0.15\\\end{array}\\\\\mathbf{A} =\mathbf{ \dfrac{10}{0.15t + 1}}[/tex]
(ii) Find t when A < 1
[tex]\begin{array}{rcl}A(t) & < & 1\\\dfrac{10}{0.15t + 1} & < & 1\\\\10 & < & 0.15t + 1\\9 & < & 0.15t\\t & > & 60\\\\\end{array}\\\mathbf{A < 1} \textbf{ when }\mathbf{ t >60}[/tex]
The figure below shows the graph of A vs t.