Respuesta :
Answer:
In terms of h
radius = 3√7)√ h
Step-by-step explanation:
[tex]volume \: = 65.94 \\ \pi = 3.14 \\ radius = [/tex]
[tex]v = \frac{1}{3} \pi {r}^{2} h \\ 65.94 = \frac{1}{3} \times 3.14 \times {r}^{2} \times h \\ 65.94 \times 3 = 1 \times 3.14 \times {r}^{2} h[/tex]
[tex]197.82 = 3.14 {r}^{2} h \\ divide \: both \: sides \: of \: the \: equation \: \\ by3.14 h\\ \frac{197.82}{3.14h} = \frac{3.14 {r}^{2}h }{3.14h} [/tex]
[tex] \frac{63}{h} = {r}^{2} \\ square \: root \: both \: sides \\ \sqrt{ \frac{63}{h} } = \sqrt{ {r}^{2} } \\ r \: = \frac{3 \sqrt{7} }{ \sqrt{h} } [/tex]
Answer:
In terms of h, the radius of the cone is [tex]\frac{3\sqrt{7} }{\sqrt{h} }[/tex]
Step-by-step explanation:
The formula for finding the volume of a cone is
[tex]Volume(V) = \frac{1}{3} \pi r^{2} h[/tex]
Make r the subject of formula in the equation above
[tex]3V = \pi r^{2} h[/tex]
[tex]\frac{3V}{\pi h } = \frac{\pi r^{2} h}{\pi h}[/tex]
[tex]r^{2} = \frac{3V}{\pi h}[/tex]
Take the square root of both sides of the equation
[tex]\sqrt{r^{2} } = \sqrt{\frac{3V}{\pi h} }[/tex]
[tex]r = \sqrt{\frac{3V}{\pi h} }[/tex]
Putting in the values given,
[tex]r = \sqrt{\frac{3 * 65.94 }{3.14h} }[/tex]
[tex]r = \sqrt{\frac{3 * 21 }{h}}[/tex]
[tex]r = \sqrt{\frac{63 }{h} }[/tex]
[tex]r = \sqrt{\frac{9 * 7}{h} }[/tex]
[tex]r = \frac{3\sqrt{7} }{\sqrt{h} }[/tex]
Hope this helps :))