Respuesta :

Answer:

  • x = -2 is an extraneous solution of [tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex]
  • [tex]x = 7[/tex] is the solution of [tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex].

Step-by-step explanation:

As the given expression

[tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex]

Lets solve this expression

[tex]\frac{3}{(x+3)(x+2)}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex]

Multiply all terms by (x+2)(x+3) and cancel:

[tex]3+(x-1)(x+3)=7(x+2)[/tex]

[tex]x^{2} +2x=7x+14[/tex]

[tex]x^{2} +2x-(7x+14)=7x+14-(7x+14)[/tex]

[tex]x^{2} -5x-14=0[/tex]

[tex](x+2)(x-7)=0[/tex]

[tex]x+2=0[/tex]  or  [tex]x-7=0[/tex]

[tex]x = -2[/tex]  or  [tex]x = 7[/tex]

x = -2 is an extraneous solution while  [tex]x = 7[/tex] is the right solution.

Verification:

Check answers. (Plug them in to make sure they work.)

Putting [tex]x = -2[/tex]

[tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex]

[tex]\frac{3}{(-2)^2+5(-2)+6}+\frac{(-2)-1}{(-2)+2}=\frac{7}{(-2)+3}[/tex]

[tex]\frac{3}{4-10+6}+\frac{-3}{0}=\frac{7}{1}[/tex]

[tex]\frac{3}{0}+\frac{-3}{0}=\frac{7}{1}[/tex]

∞ + ∞ = 7  

L.H.S ≠ R.H.S

x = -2 is an extraneous solution.

Putting [tex]x = 7[/tex]

[tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex]

[tex]\frac{3}{(7)^2+5(7)+6}+\frac{(7)-1}{(7)+2}=\frac{7}{(7)+3}[/tex]

[tex]\frac{3}{49+35+6}+\frac{6}{9}=\frac{7}{10}[/tex]

[tex]\frac{3}{90}+\frac{6}{9}=\frac{7}{10}[/tex]

[tex]\frac{3+60}{90}=\frac{7}{10}[/tex]

[tex]\frac{63}{90}=\frac{7}{10}[/tex]

[tex]\frac{7}{10}=\frac{7}{10}[/tex]

L.H.S = R.H.S

So, [tex]x = 7[/tex] is the solution of [tex]\frac{3}{x^2+5x+6}+\frac{x-1}{x+2}=\frac{7}{x+3}[/tex].

Keywords: solution, extraneous solution, equation

Learn more about solution, extraneous solution of equation from brainly.com/question/12833402

#learnwithBrainly

Answer:

1. x=7

2. x=-2

Step-by-step explanation:

ACCESS MORE