Respuesta :
Answer:
Explanation:
Given
mass of box [tex]m=2\ kg[/tex]
speed of box [tex]v=1.9\ m/s[/tex]
distance moved by the box [tex]x=10\ cm[/tex]
coefficient of kinetic friction [tex]\mu _k=0.66[/tex]
Friction force [tex]f_r=\mu_kN[/tex]
[tex]f_r=0.66\times mg[/tex]
[tex]f_r=0.66\times 2\times 9.8=12.936 \N[/tex]
Kinetic Energy of box will be utilize to overcome friction and rest is stored in spring in the form of elastic potential energy
[tex]\frac{1}{2}mv^2=f_r\cdot x+\frac{1}{2}kx^2[/tex]
[tex]\frac{1}{2}\times 2\times 1.9^2=12.936\times 0.1+\frac{1}{2}\times k\times (0.1)^2[/tex]
[tex]3.61-1.2936=0.005\times k[/tex]
[tex]k=463.28\ N/m[/tex]
Answer:
463.2 N/m
Explanation:
mass of block, m = 2 kg
velocity of spring, v = 1.9 m/s
distance, r = 10 cm = 0.1 m
coefficient of friction, μ = 0.66
Let the spring constant is K.
friction force, f = μ mg = 0.66 x 2 x 9.8 = 12.94 N
Use work energy theorem
[tex]\frac{1}{2}mv^{2}=f \times r + \frac{1}{2}Kr^{2}[/tex]
0.5 x 2 x 1.9 x 1.9 = 12.94 x 0.1 + 0.5 x K x 0.1 x 0.1
3.61 = 1.294 + 0.005 K
K = 463.2 N/m
Thus, the spring constant is 463.2 N/m.