Respuesta :
Answer:
4.53482 m/s
4.506 m/s
Explanation:
[tex]m_1[/tex] = Mass of player = 75 kg
[tex]v_1[/tex] = Initial velocity of player = 4.6 m/s
[tex]m_2[/tex] = Mass of ball = 0.47 kg
[tex]v_1[/tex] = Initial velocity of ball = 15 m/s
The linear momentum of the system is conserved
[tex](m_1+m_2)v_1=m_1v+m_2v_2\\\Rightarrow v=\dfrac{(m_1+m_2)v_1-m_2v_2}{m_1}\\\Rightarrow v=\dfrac{(75+0.47)4.6-0.47\times 15}{75}\\\Rightarrow v=4.53482\ m/s[/tex]
The player's speed is 4.53482 m/s
In the second case the equation of momentum is
[tex](m_1+m_2)v_1=m_1v+m_2(v_2+v_1)\\\Rightarrow v=\dfrac{(m_1+m_2)v_1-m_2(v_2+v_1)}{m_1}\\\Rightarrow v=\dfrac{(75+0.47)4.6-0.47\times (15+4.6)}{75}\\\Rightarrow v=4.506\ m/s[/tex]
The player's speed is 4.506 m/s
The player's speed will be:
(A) 4.535 m/s
(B) 4.506 m/s
Given values,
Mass,
- [tex]m_1 = 75 \ kg[/tex]
- [tex]m_2 = 0.47 \ kg[/tex]
Velocity,
- [tex]v_1 = 4.6 \ m/s[/tex]
- [tex]v_2 = 15 \ m/s[/tex]
(A)
We know,
→ [tex](m_1+m_2)v_1 = m_1 v+m_2 v_2[/tex]
or,
→ [tex]v_1 = \frac{(m_1+m_2)v_1-m_2 v_2}{m_1}[/tex]
By putting the values, we get
[tex]= \frac{(75+0.47)4.6-0.47\times 15}{75}[/tex]
[tex]= 4.535 \ m/s[/tex]
(B)
By using the equation of momentum, we get
→ [tex](m_1+m_2)v_1= m_1 v+m_2(v_2+v_1)[/tex]
or,
→ [tex]v = \frac{(m_1+m_2)v_1-m_2(v_2+v_1)}{m_1}[/tex]
By putting the values, we get
[tex]= \frac{(75+0.47)4.6-0.47(15+4.6)}{75}[/tex]
[tex]= 4.506 \ m/s[/tex]
Thus the above response is correct.
Learn more:
https://brainly.com/question/15567515