contestada

A 75 kg football player is gliding forward across very smooth ice at 4.6 m/s. He throws a 0.47 kg football straight forward. A) What is the player's speed afterward if the ball is thrown at 15 m/s relative to the ground?B) What is the player's speed afterward if the ball is thrown at 15 m/s relative to the player?

Respuesta :

Answer:

4.53482 m/s

4.506 m/s

Explanation:

[tex]m_1[/tex] = Mass of player = 75 kg

[tex]v_1[/tex] = Initial velocity of player = 4.6 m/s

[tex]m_2[/tex] = Mass of ball = 0.47 kg

[tex]v_1[/tex] = Initial velocity of ball = 15 m/s

The linear momentum of the system is conserved

[tex](m_1+m_2)v_1=m_1v+m_2v_2\\\Rightarrow v=\dfrac{(m_1+m_2)v_1-m_2v_2}{m_1}\\\Rightarrow v=\dfrac{(75+0.47)4.6-0.47\times 15}{75}\\\Rightarrow v=4.53482\ m/s[/tex]

The player's speed is 4.53482 m/s

In the second case the equation of momentum is

[tex](m_1+m_2)v_1=m_1v+m_2(v_2+v_1)\\\Rightarrow v=\dfrac{(m_1+m_2)v_1-m_2(v_2+v_1)}{m_1}\\\Rightarrow v=\dfrac{(75+0.47)4.6-0.47\times (15+4.6)}{75}\\\Rightarrow v=4.506\ m/s[/tex]

The player's speed is 4.506 m/s

The player's speed will be:

(A) 4.535 m/s

(B) 4.506 m/s

Given values,

Mass,

  • [tex]m_1 = 75 \ kg[/tex]
  • [tex]m_2 = 0.47 \ kg[/tex]

Velocity,

  • [tex]v_1 = 4.6 \ m/s[/tex]
  • [tex]v_2 = 15 \ m/s[/tex]

(A)

We know,

→ [tex](m_1+m_2)v_1 = m_1 v+m_2 v_2[/tex]

or,

→                  [tex]v_1 = \frac{(m_1+m_2)v_1-m_2 v_2}{m_1}[/tex]

By putting the values, we get

                        [tex]= \frac{(75+0.47)4.6-0.47\times 15}{75}[/tex]

                        [tex]= 4.535 \ m/s[/tex]

(B)

By using the equation of momentum, we get

→ [tex](m_1+m_2)v_1= m_1 v+m_2(v_2+v_1)[/tex]

or,

→                   [tex]v = \frac{(m_1+m_2)v_1-m_2(v_2+v_1)}{m_1}[/tex]

By putting the values, we get

                        [tex]= \frac{(75+0.47)4.6-0.47(15+4.6)}{75}[/tex]

                        [tex]= 4.506 \ m/s[/tex]

Thus the above response is correct.  

Learn more:

https://brainly.com/question/15567515