Respuesta :
Answer:
[tex]T(N)=\frac{67}{8}N-\frac{2031}{4}[/tex]
Step-by-step explanation:
Please consider the complete question.
Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 112 chirps per minute 74° F at and 179 chirps per minute at 82°F. Find a linear equation that models the temperature T as a function of the number of chirps per minute N.
We have been given two points on the line [tex](74,112)[/tex] and [tex](82,179)[/tex].
First of all, we will find the slope of the line using given points as:
[tex]\text{Slope}=m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{179-112}{82-74}[/tex]
[tex]m=\frac{67}{8}[/tex]
Now, we will points-slope form of an equation to write our required equation as:
[tex](y-y_1)=m-(x-x_1)[/tex]
[tex](y-112)=\frac{67}{8}-(x-74)[/tex]
[tex](y-112)=\frac{67}{8}(x-74)[/tex]
[tex]y-112=\frac{67}{8}x-\frac{67}{8}*74[/tex]
[tex]y-112+112=\frac{67}{8}x-\frac{67}{8}*74+112[/tex]
[tex]y=\frac{67}{8}x-\frac{67}{4}*37+\frac{4*112}{4}[/tex]
[tex]y=\frac{67}{8}x-\frac{2479}{4}+\frac{448}{4}[/tex]
[tex]y=\frac{67}{8}x-\frac{2031}{4}[/tex]
Since we are required to write temperature T as a function of the number of chirps per minute N, so we will get:
[tex]T(N)=\frac{67}{8}N-\frac{2031}{4}[/tex]
Therefore, our required function would be [tex]T(N)=\frac{67}{8}N-\frac{2031}{4}[/tex].