Respuesta :

The factorization of given expression is:

[tex]216x^{12}-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)[/tex]

Solution:

Given that we have to factorize the given expression

Given expression is:

[tex]216x^{12}-64[/tex]

Let us factorize the expression

[tex]\text{ Rewrite } 64 \text{ as } 8 \times 8[/tex]

[tex]\text{Rewrite } 216 \text{ as } 8 \times 27[/tex]

Thus the given expression becomes,

[tex]216x^{12} - 64 = (8 \times 27)(x^{12}) - (8 \times 8)\\\\\text{Factor out common term 8 }[/tex]

[tex]216x^{12} -64= 8(27x^{12}-8)[/tex]

[tex]\mathrm{Rewrite\:}27x^{12}-8\mathrm{\:as\:}\left(3x^4\right)^3-2^3[/tex]

[tex]8(27x^{12}-8) = 8(\left(3x^4\right)^3-2^3)[/tex]

Let us apply the difference of cubes formula

[tex]x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)[/tex]

[tex]\left(3x^4\right)^3-2^3=\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)[/tex]

Therefore,

[tex]8(27x^{12}-8) = 8\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)\\\\8(27x^{12}-8) = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)[/tex]

Thus factorization of given expression is:

[tex]216x^{12}-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)[/tex]

ACCESS MORE